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Abstract

By using a matrix technique, which allows us to identify directly the ladder
operators, the Penning trap coherent states are derived as eigenstates of the
appropriate annihilation operators. These states are compared with those
obtained through the displacement operator. The associated wavefunctions
and mean values for some relevant operators in these states are also evaluated.
It turns out that the Penning trap coherent states minimize the Heisenberg
uncertainty relation.

PACS numbers: 03.65.Ge, 03.65.Sq, 37.10.Ty, 37.30.+i

1. Introduction

The coherent states (CS) approach to quantum physical systems [1–3] constitutes nowadays
an alternative to the standard method, which addresses the same problem in terms of energy
eigenstates and eigenvalues. For years the CS have been derived for plenty of Hamiltonians
having either a ground or a top state, and some of them admit a group theoretical construction
in which this state is acted on by an appropriate displacement operator [2, 4]. However, there
exist interesting physical systems for which the Hamiltonians have neither ground nor top
state [5, 6], but a systematic technique to build up the corresponding CS is required anyway.
One of those systems consists of a charged particle in an ideal Penning trap [7, 8]. Such
an arrangement, sometimes called a geonium atom, has been largely used to perform high-
precision measurements of fundamental properties of particles [7]. Moreover, it could be used
to test and/or control some intrinsically quantum phenomena as entanglement, decoherence,
wavepacket reduction, etc [8–10].

In this paper we are going to address, from a CS viewpoint, the quantum motion of
a charged particle in a Penning trap. With this aim, in section 2 we will present some
generalities of the standard coherent states. In sections 3 and 4, we will introduce the Penning
trap Hamiltonian and discuss its corresponding algebraic structure. It will be shown that the
system possesses a certain ‘extremal’ state, which plays the role of a ground state although
there is no minimum energy eigenvalue. In section 5 we will construct the wavefunction
associated with the extremal state, while in section 6 we will perform the corresponding CS
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construction. The mean values of some physical quantities in the CS will be calculated in
section 7. Finally, in section 8 our conclusions will be presented.

2. Standard coherent states

Glauber definitions of CS are based on the properties of the harmonic oscillator [11], which
have been applied to several different systems (see, e.g., [1–3]):

(1) The CS |z〉 are eigenstates of the annihilation operator a:

a|z〉 = z|z〉, z ∈ C. (1)

(2) They arise from acting the displacement operator on the ground state:

|z〉 = D(z)|ψ0〉, D(z) = exp(za† − z∗a), (2)

with a† being the creation operator.
(3) The CS satisfy the minimum Heisenberg uncertainty relation for X and P:

(�X)z(�P )z = h̄/2, (3)

where (�O)2
z = 〈z|(O − 〈O〉z)2|z〉 = 〈O2〉z − 〈O〉2

z is the mean-square deviation of an
observable O in the state |z〉.
It is worth noting an additional property of the standard CS, which is relevant since

some authors consider it as the fourth CS definition. It is the completeness relationship
1
π

∫ |z〉〈z| d2z = 1, where 1 is the identity operator. In fact, the CS are overcomplete in the
sense that for any convergent sequence of complex numbers zn the corresponding CS |zn〉
form a complete set [12].

For systems different from the harmonic oscillator, these definitions lead to different sets
of CS. In this paper, we will use the first and second definitions to find the CS for a charged
particle in an ideal Penning trap; we will show that they satisfy as well equation (3).

3. Penning trap Hamiltonian and the matrix ΛΛΛ

Let us consider a spinless particle of mass m and electric charge e inside an ideal Penning
trap, i.e., under the influence of a constant homogeneous magnetic field pointing along the
z-direction �B = Bk̂, and a static electric field �E = −�∇�(�r), both arising from the following
vector and quadrupole scalar potentials:

�A(�r) = −1

2
�r × �B, �(�r) = �0

d2
(x2 + y2 − 2z2). (4)

Throughout this paper, the small letters �r, �p, x, y, z, px, py, px will denote either classical
coordinates and momenta or the eigenvalues associated with the corresponding quantum
operators, the last ones being represented by capital letters �R, �P ,X, Y,Z, Px, Py, Pz. The
Hamiltonian describing our quantum system is given by

H = 1

2m

(
�P − e

c
�A( �R)

)2
+ e�( �R) =

�P 2

2m
+ bLz +

m

2
[(b2 + v)(X2 + Y 2) − 2vZ2], (5)

where �L = �R × �P is the angular momentum operator, b = − eB
2mc

, v = 2e�0
md2 and we take by

simplicity b > 0. To ensure that the particle is trapped inside the cavity, some restrictions
on the parameters b, v have to be taken: first of all v < 0 in order that the z-motion is
bounded (so that this mode is characterized by a standard oscillator Hamiltonian). However,
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the corresponding repulsive oscillators in the x–y plane do not have to destroy the trapped
motion induced by the magnetic field, which is achieved by taking b2 + v > 0.

From now on we will assume that m = 1 and h̄ = 1. Note that this assumption is equivalent
to the following procedure: (i) first making the operator changes R̂i = Ri

√
m/h̄, P̂i =

Pi/
√

mh̄, i = 1, 2, 3, Ĥ = H/h̄; (ii) then dropping the hats in order to simplify the notation.
Thus, the Hamiltonian we are dealing with reads

H =
�P 2

2
+ bLz +

1

2
[(b2 + v)(X2 + Y 2) − 2vZ2], (6)

where [Ri, Pj ] = iδij .
It is useful to work in the Heisenberg picture in which the evolution of the operator vector

η(t) = U †(t)ηU(t) is simply determined from a matrix equation:
dη(t)

dt
= U †(t)[iH, η]U(t) = U †(t)���ηU(t) = ���η(t) ⇒ η(t) = e���tη, (7)

where η = ( �R, �P )T involves the observables �R, �P in the Schrödinger picture, the superindex
T denotes to transpose the involved vector, U(t) is the evolution operator such that U(0) = 1.
The calculation of [iH, η] = ���η leads to

��� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −b 0 1 0 0
b 0 0 0 1 0
0 0 0 0 0 1

−b2 − v 0 0 0 −b 0
0 −b2 − v 0 b 0 0
0 0 2v 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Let us find next the right (u) and left (f ) eigenvectors of the matrix ���, which are called
eigenvectors and eigenforms, respectively. Since ��� is non-Hermitian, the eigenforms f are
not necessarily the adjoints of the eigenvectors u. In order to determine both, we solve in the
first place the characteristic equation of ���:

|��� − λ1| = λ6 + 4b2λ4 − v(8b2 + 3v)λ2 − 2v3 = 0. (9)

Thus, the eigenvalues are ±λ1 = ±iω1,±λ2 = ±iω2,±λ3 = ±iω3, where

ω1 = b +
√

b2 + v, ω2 = b −
√

b2 + v, ω3 = √−2v. (10)

We label as uk, u
∗
k and fk, f

∗
k the eigenvectors and eigenforms associated with the eigenvalues

λk, λ
∗
k = −λk , respectively, i.e., ���uk = λkuk,���u∗

k = −λku
∗
k, fk��� = λkfk, f

∗
k ��� =

−λkf
∗
k , k = 1, 2, 3, with the ∗ denoting complex conjugation. An explicit calculation leads to

u1 = s1

(
1√

b2 + v
,

−i√
b2 + v

, 0, i, 1, 0

)T

, f1 = t1
(√

b2 + v, i
√

b2 + v, 0,−i, 1, 0
)
,

u2 = s2

( −1√
b2 + v

,
i√

b2 + v
, 0, i, 1, 0

)T

, f2 = t2
( −

√
b2 + v,−i

√
b2 + v, 0,−i, 1, 0

)
,

u3 = s3

(
0, 0,

−i√−2v
, 0, 0, 1

)T

, f3 = t3
(
0, 0, i

√−2v, 0, 0, 1
)
,

where sj , tj ∈ C, j = 1, 2, 3. We require that the eigenvectors and eigenforms be dual
to each other [5, 6, 13], namely, fjuk = f ∗

j u∗
k = δjk, fju

∗
k = f ∗

j uk = 0, implying that

s1 = 1
4t1

, s2 = 1
4t2

, s3 = 1
2t3

. The constants tj will be fixed later to simplify some commutation
relationships. Finally, the eigenvectors and eigenforms satisfy the unit matrix decomposition

1 =
3∑

k=1

(uk ⊗ fk + u∗
k ⊗ f ∗

k ) ⇒ ��� =
3∑

k=1

λk(uk ⊗ fk − u∗
k ⊗ f ∗

k ), (11)
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with ⊗ denoting the tensor product. The ���-expression in (11) allows us to decompose the
Heisenberg trajectories as three oscillating modes of frequencies ωj [5, 6]. Moreover, it will
characterize as well the algebraic structure of the Hamiltonian.

4. Algebraic structure of H

We can define now three pairs of ladder operators of H,Lk = f ∗
k η, L

†
k = fkη, k = 1, 2, 3,

which obey the following commutation relations with H:

[H,Lk] = −if ∗
k [iH, η] = −ωkLk,

[
H,L

†
k

] = ωkL
†
k. (12)

An explicit calculation leads to

L1 = t∗1
[√

b2 + v(X − iY ) + i(Px − iPy)
]
,

L2 = t∗2 [−
√

b2 + v(X − iY ) + i(Px − iPy)], L3 = t∗3 (−i
√−2vZ + Pz).

(13)

By evaluating next the commutators between Li, L
†
j , the following non-null results are

obtained: [
L1, L

†
1

] = 2|t1|2(ω1 − ω2) = 1,[
L2, L

†
2

] = −2|t2|2(ω1 − ω2) = −1,
[
L3, L

†
3

] = 2|t3|2ω3 = 1,
(14)

where we have finally chosen ti ∈ R
+ such that t1 = t2 = 1/

√
2(ω1 − ω2), t3 = 1/

√
2ω3

to simplify at maximum equation (14). On the other hand,
[
L

†
i , L

†
j

] = [Li, Lj ] = 0, i, j =
1, 2, 3.

Now H is factorized in terms of Lk,L
†
k as follows [5, 6]:

H = ω1L
†
1L1 − ω2L2L

†
2 + ω3L

†
3L3 + (ω1 − ω2 + ω3)/2. (15)

Moreover, equations (14) and (15) allow us to identify three independent oscillator modes for
H, each one characterized by its number Nk , annihilation Bk and creation B

†
k operator, in the

way

Nk = B
†
kBk, k = 1, 2, 3, (16)

B1 = L1, B2 = L
†
2, B3 = L3, B

†
1 = L

†
1, B

†
2 = L2, B

†
3 = L

†
3. (17)

They obey the standard commutation relations:

[Nk,Bk] = −Bk,
[
Nk,B

†
k

] = B
†
k,

[
Bj , B

†
k

] = δjk, j, k = 1, 2, 3. (18)

Hence, one can construct a basis {|n1, n2, n3〉, nj = 0, 1, 2, . . . , j = 1, 2, 3} of common
eigenstates of N1, N2, N3,

Nj |n1, n2, n3〉 = nj |n1, n2, n3〉, j = 1, 2, 3, (19)

departing from an extremal state |0, 0, 0〉 which is annihilated by B1, B2, B3:

Bj |0, 0, 0〉 = 0, j = 1, 2, 3. (20)

If we assume that |0, 0, 0〉 is normalized, it turns out that [14]

|n1, n2, n3〉 = (n1!n2!n3!)−1/2B
†
1
n1B

†
2
n2B

†
3
n3 |0, 0, 0〉. (21)

Moreover, Bj , B
†
j , j = 1, 2, 3, act onto |n1, n2, n3〉 in a standard way:

B1|n1, n2, n3〉 = √
n1|n1 − 1, n2, n3〉, B

†
1|n1, n2, n3〉 =

√
n1 + 1|n1 + 1, n2, n3〉,

4
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and similar expressions for the action of B2, B
†
2, B3, B

†
3. Note that |n1, n2, n3〉 is the eigenstate

of the Penning trap Hamiltonian with the eigenvalue En1,n2,n3 = ω1(n1 + 1/2) − ω2(n2 +
1/2) + ω3(n3 + 1/2) ≡ E(n1, n2, n3). In particular, the extremal state |0, 0, 0〉 has eigenvalue
E0,0,0 = (ω1 − ω2 + ω3)/2, i.e., it is neither a ground nor a top state since its energy is ‘in
the middle’ of the spectrum of H. Following [15], it is seen that there is an intrinsic algebraic
structure for our system, which is characterized by a linear relationship between the Penning
trap Hamiltonian H and the three number operators Nk:

H = E(N1, N2, N3) = ω1N1 − ω2N2 + ω3N3 + E0,0,0. (22)

As it happens for one-dimensional systems, in our three-dimensional example the detailed
structure is contained in the operator relation (22), which is responsible for the specific
spectrum and, consequently, for the lack of a ground or a top proper energy. On the other
hand, the global structure comes from the very existence of the three independent oscillator
modes for H, each one characterized by the standard generators

{
Nj,Bj , B

†
j

}
, j = 1, 2, 3.

This global behavior allows us to identify in a natural way the extremal state |0, 0, 0〉 which,
although is neither a ground nor a top energy eigenstate, plays the same role as the ground
state for the one-dimensional harmonic oscillator.

5. Extremal state wavefunction

The existence of the extremal state |0, 0, 0〉 is guaranteed by a theorem which is proven
elsewhere [5]. It ensures that, if the operators

Bj = i �P · �αj + �R · �βj , B
†
j = −i�α†

j · �P + �β†
j · �R, j = 1, 2, 3, (23)

obey the commutation relations (18), then the system of partial differential equations
〈�r|Bj |0, 0, 0〉 = 0, j = 1, 2, 3, for the extremal state wavefunction φ0(�r) ≡ 〈�r|0, 0, 0〉
has a square integrable solution given by

φ0(�r) = c exp
(− 1

2aij rirj

) = c exp
(− 1

2 �rTa�r) , (24)

where a = (aij ) is a complex symmetric matrix satisfying

a�αj = �βj , j = 1, 2, 3. (25)

According to (23), through equations (13) and (17) we identify the vectors

�α1 = 1

2(b2 + v)1/4
(1,−i, 0)T, �β1 = (b2 + v)1/2 �α1,

�α2 = − 1

2(b2 + v)1/4
(1, i, 0)T, �β2 = (b2 + v)1/2 �α2, (26)

�α3 = − i√
2(−2v)1/4

(0, 0, 1)T, �β3 = (−2v)1/2 �α3.

Thus, a = diag[
√

b2 + v,
√

b2 + v,
√−2v], and from (24) we finally get the extremal state

wavefunction we were looking for:

φ0(�r) = c exp

(
−

√
b2 + v

2
(x2 + y2) −

√−v

2
z2

)
. (27)

6. Penning trap coherent states

Once the Penning trap Hamiltonian has been expressed appropriately in terms of annihilation
and creation operators, we can develop a similar treatment as for the harmonic oscillator to
build up the corresponding coherent states.

5
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6.1. Annihilation operator coherent states

In the first place let us look for the annihilation operator coherent states (AOCS) as the common
eigenstates of B1, B2, B3:

Bj |z1, z2, z3〉 = zj |z1, z2, z3〉, j = 1, 2, 3. (28)

Following a standard procedure, let us expand them in the basis {|n1, n2, n3〉}:

|z1, z2, z3〉 =
∞∑

n1,n2,n3=0

cn1,n2,n3 |n1, n2, n3〉. (29)

By asking that (28) is satisfied, three recurrence relationships for cn1,n2,n3 will be obtained,
which in turn lead to the following expressions:

cn1,n2,n3 = (n1!)−1/2z
n1
1 c0,n2,n3 = (n2!)−1/2z

n2
2 cn1,0,n3 = (n3!)−1/2z

n3
3 cn1,n2,0. (30)

Hence, it is straightforward to show that

cn1,n2,n3 = (n1!n2!n3!)−1/2z
n1
1 z

n2
2 z

n3
3 c0,0,0, (31)

where c0,0,0 is to be found from the normalization condition. Thus, up to a global phase factor,
the normalized AOCS become finally

|z1, z2, z3〉 = e− |z1 |2+|z2 |2+|z3 |2
2

∞∑
n1,n2,n3=0

(n1!n2!n3!)−1/2z
n1
1 z

n2
2 z

n3
3 |n1, n2, n3〉. (32)

6.2. Displacement operator coherent states

According to equation (2), for the j th mode of the Penning trap Hamiltonian we have to take
into account the corresponding displacement operator Dj(zj ) = exp

(
zjB

†
j −z∗

jBj

)
. By using

the BCH formula it turns out that

Dj(zj ) = e− |zj |2
2 ezj B

†
j e−z∗

j Bj , j = 1, 2, 3. (33)

Now, the global displacement operator is given by

D(z) ≡ D(z1, z2, z3) = D1(z1)D2(z2)D3(z3), (34)

where z denotes the complex variables z1, z2, z3 associated with the three modes. By
employing now the second definition, we get the displacement operator coherent states (DOCS)
|z〉 from applying D(z) to the extremal state |0, 0, 0〉:

|z〉 = D(z)|0, 0, 0〉 = e− |z1 |2+|z2 |2+|z3 |2
2

∞∑
n1,n2,n3=0

z
n1
1 z

n2
2 z

n3
3 |n1, n2, n3〉√
n1!n2!n3!

. (35)

By comparing (32) and (35) we realize that the DOCS and the AOCS are the same. Moreover,
since

[
zjB

†
j − z∗

jBj , zkB
†
k − z∗

kBk

] = 0, j, k = 1, 2, 3, we get

D(z) = exp
(
z1B

†
1 + z2B

†
2 + z3B

†
3 − z∗

1B1 − z∗
2B2 − z∗

3B3
) = exp[i( �� · �R − �� · �P)]

= C(z)F ( �R) exp(−i�� · �P) = [C(z)]−1 exp(−i�� · �P)F( �R), (36)

where we have used the BCH formula and equation (23) to identify

�� =

⎛
⎜⎝ (b2 + v)−

1
4 Re[z1 − z2]

−(b2 + v)−
1
4 Im[z1 + z2]

−(−v/2)−
1
4 Im[z3]

⎞
⎟⎠ , �� =

⎛
⎜⎝(b2 + v)

1
4 Im[z1 − z2]

(b2 + v)
1
4 Re[z1 + z2]

(−8v)
1
4 Re[z3]

⎞
⎟⎠ ,

C(z) = e−i��· ��/2 = exp{i(Re[z1] Im[z2] + Re[z2] Im[z1] + Re[z3] Im[z3])},
F ( �R) = ei ��· �R = exp{i(b2+ v)

1
4 (Im[z1−z2]X+Re[z1+z2]Y )+i(−8v)

1
4 Re[z3]Z}.

(37)

6
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Since the operator e−i �P · ��, �i ∈ R, performs a coordinate displacement in the way 〈�r| e−i �P · �� =
〈�r − ��|, we finally get

φz(�r) ≡ 〈�r|z〉 = 〈�r|D(z)|0, 0, 0〉 = C(z)F (�r)〈�r| e−i �P · ��|0, 0, 0〉,

= C(z)F (�r)φ0

(
x − Re[z1 − z2]

(b2 + v)
1
4

, y +
Im[z1 + z2]

(b2 + v)
1
4

, z +

(−2

v

) 1
4

Im[z3]

)
, (38)

with φ0(�r) given by (27).

7. Mean values of physical quantities

Let us evaluate next the mean values 〈Rj 〉z ≡ 〈z|Rj |z〉, 〈Pj 〉z ≡ 〈z|Pj |z〉, j = 1, 2, 3, and the
corresponding mean-square deviations in a given CS |z〉. To do that, we analyze first how the
operators Rj ,R

2
j , Pj , P

2
j are transformed under D(z). By using equations (36) and (37) it is

straightforward to show that

D†(z)Rn
j D(z) = (Rj + �j)

n, D†(z)P n
j D(z) = (Pj + �j)

n, n = 1, 2, . . . (39)

Therefore,

〈Rj 〉z = 〈Rj 〉0 + �j ,
〈
R2

j

〉
z
= 〈

R2
j

〉
0

+ 2�j 〈Rj 〉0 + �j
2, (�Rj)

2
z = (�Rj )

2
0, (40)

〈Pj 〉z = 〈Pj 〉0 + �j,
〈
P 2

j

〉
z
= 〈

P 2
j

〉
0

+ 2�j 〈Pj 〉0 + �j
2, (�Pj )

2
z = (�Pj )

2
0. (41)

Note that the mean-square deviations of Rj and Pj are independent of z1, z2, z3 but depend on
〈Rj 〉0, 〈Pj 〉0,

〈
R2

j

〉
0
,
〈
P 2

j

〉
0
, j = 1, 2, 3, which need to be evaluated. The first six quantities can

be obtained from the homogeneous equations 〈Bk〉0 = i(�αk)j 〈Pj 〉0 + ( �βk)j 〈Rj 〉0 = 0,
〈
B

†
k

〉
0

=
−i(�α∗

k )j 〈Pj 〉0 + ( �β∗
k)j 〈Rj 〉0 = 0, k = 1, 2, 3 (see (23) and use that Bk|0, 0, 0〉 = 〈0, 0, 0|B†

k =
0). By using (26), the system to be solved becomes

− i
√−2v〈Z〉0 + 〈Pz〉0 = 0,√

b2 + v(〈X〉0 − i〈Y 〉0) + i(〈Px〉0 − i〈Py〉0) = 0,

−
√

b2 + v(〈X〉0 + i〈Y 〉0) − i(〈Px〉0 + i〈Py〉0) = 0,

and the complex conjugate equations. Its solution is given by

〈Rj 〉0 = 〈Pj 〉0 = 0, j = 1, 2, 3. (42)

In order to obtain
〈
R2

j

〉
0
,
〈
P 2

j

〉
0
, we calculate the mean values for the several products

of pairs involving Bj , B
†
k . From these 36 equations just 21 are linearly independent:

〈BjBk〉0 = 0, j = 1, 2, 3, k � j (six equations);
〈
B

†
jB

†
k

〉
0

= 0, j = 1, 2, 3, k � j

(six equations);
〈
B

†
kBj

〉
0

= 0, j, k = 1, 2, 3, (nine equations). By solving this linear system,
the non-null mean values of the 21 independent products of Ri and Pj are now

〈X2〉0 = 〈Y 2〉0 = [4(b2 + v)]−
1
2 , 〈Z2〉0 = (−8v)−

1
2 ,〈

P 2
x

〉
0

= 〈
P 2

y

〉
0

= [(b2 + v)/4]
1
2 ,

〈
P 2

z

〉
0

= (−v/2)
1
2 ,

〈XPx〉0 = 〈YPy〉0 = 〈ZPz〉0 = i/2.

The previous formulae imply that equations (40) and (41) become

(�X)2
z = (�Y)2

z = [4(b2 + v)]−
1
2 , (�Z)2

z = (−8v)−
1
2 ,

(�Px)
2
z = (�Py)

2
z = [(b2 + v)/4]

1
2 , (�Pz)

2
z = (−v/2)

1
2 ,
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and therefore

(�X)z(�Px)z = (�Y)z(�Py)z = (�Z)z(�Pz)z = 1/2.

This means that our CS have minimum Heisenberg uncertainty relations.
Finally, by using equations (16) and (22) we calculate the mean value of the Hamiltonian

H in a given CS |z〉:
〈H 〉z = ω1|z1|2 − ω2|z2|2 + ω3|z3|2 + E0,0,0. (43)

A similar calculation for 〈H 2〉z can be done, leading to

(�H)2
z = (

b +
√

b2 + v
)2|z1|2 +

(
b −

√
b2 + v

)2|z2|2 − 2v|z3|2. (44)

Once again, the fact that H is not positive definite is clearly reflected in (43).
Along this work we have assumed that b = − eB

2mc
> 0. For b < 0, small differences

concerning the identification of the appropriate annihilation and creation operators arise.
However, the extremal state and CS wavefunctions φ0(�r), φz(�r) as well as the corresponding
mean values will coincide with those previously calculated. In particular, the Heisenberg
uncertainty relation will achieve once again its minimum value [14].

8. Concluding remarks

In this paper a technique to find the CS for a charged particle in an ideal Penning trap was
introduced. We have shown that the coherent states, calculated through both definitions given
by equations (1) and (2), are the same. We introduced also a prescription to obtain the mean
values of several physical observables in a given coherent state. We have found, finally, that
the Penning trap coherent states (derived algebraically) obey also the third CS definition, i.e.,
they satisfy the minimum Heisenberg uncertainty relation.

Let us remark that the method presented here is quite general, and it could be applied to
other systems characterized by quadratic Hamiltonians. In order to implement systematically
this treatment, we have to identify first the stability regions where the non-degenerate
eigenvalues of ��� become purely imaginary, which ensures that the Heisenberg and classical
trajectories are trapped. In the trap regime, the Hamiltonian is decomposed in terms of
independent harmonic oscillators, and thus our procedure can be straightforwardly applied.
Note that generalizations of this kind have been elaborated elsewhere (see, e.g., [16]).
However, in our method it is direct to identify the global sign accompanying each individual
oscillator involved in the Hamiltonian decomposition. As we saw in our Penning trap example,
those signs determine the existence or not of a ground state for the system, a fact which is not
well known in the literature. Moreover, they become fundamental for the determination of the
intrinsic algebraic structure of the involved Hamiltonian (compare equation (22)). Observe
that some of these properties were found previously for operators imitating the Hamiltonian
in non-inertial reference frames [5, 6]. By means of this example we have shown that such a
property arises as well for Hamiltonians in inertial frames of reference.
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